A particle shower detected by the IceCube Neutrino Observatory at the very high energy of the Glashow resonance demonstrates its potential for the study of high-energy particle physics and astrophysics.

  • 1.Glashow, S. L. Resonant scattering of antineutrinos. Phys. Rev. 118, 316317 (1960).
    ADS 
    Article 
    Google Scholar 

  • 2.Mohrmann, L. Update of a combined analysis of the high-energy cosmic neutrino flux at the IceCube detector. In Proc. 34th Int. Cosmic Ray Conf. (ICRC 2015) 1066 (Proceedings of Science, 2016).

  • 3.Barger, V. et al. Glashow resonance as a window into cosmic neutrino sources. Phys. Rev. D90, 121301 (2014).
    ADS 
    Article 
    Google Scholar 

  • 4.Zyla, P. A. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
    Article 
    Google Scholar 

  • 5.Kashti, T. & Waxman, E. Flavoring astrophysical neutrinos: flavor ratios depend on energy. Phys. Rev. Lett. 95, 181101 (2005).
    ADS 
    Article 
    Google Scholar 

  • 6.Bell, A. R. The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147156 (1978).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 7.Waxman, E. & Bahcall, J. N. High-energy neutrinos from astrophysical sources: an upper bound. Phys. Rev. D59, 023002 (1998).
    ADS 
    Article 
    Google Scholar 

  • 8.Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).
    Article 
    Google Scholar 

  • 9.Chirkin, D. Event reconstruction in IceCube based on direct event re-simulation. In Proc. 33rd Int. Cosmic Ray Conf. (ICRC2013) 0581 (2013).

  • 10.Aartsen, M. G. et al. Energy reconstruction methods in the IceCube neutrino telescope. J. Instrum. 9, P03009 (2014).
    Article 
    Google Scholar 

  • 11.Abbasi, R. et al. The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Methods A601, 294316 (2009).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 12.Abbasi, R. et al. Calibration and characterization of the IceCube photomultiplier tube. Nucl. Instrum. Methods A618, 139152 (2010).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 13.Aartsen, M. et al. Search for astrophysical tau neutrinos in three years of IceCube data. Phys. Rev. D93, 022001 (2016).
    ADS 
    Article 
    Google Scholar 

  • 14.Lu, L. Multi-flavour PeV neutrino search with IceCube. In Proc. 35th Int.Cosmic Ray Conf. (ICRC 2017) 1002 (Proceedings of Science, 2018).

  • 15.Aartsen, M. G. et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D98, 062003 (2018).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 16.Aartsen, M. G. et al. Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Methods A711, 7389 (2013).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 17.Gaisser, T. K., Jero, K., Karle, A. & van Santen, J. Generalized self-veto probability for atmospheric neutrinos. Phys. Rev. D90, 023009 (2014).
    ADS 
    Article 
    Google Scholar 

  • 18.Argüelles, C. A., Palomares-Ruiz, S., Schneider, A., Wille, L. & Yuan, T. Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes. J. Cosmol. Astropart. Phys. 1807, 047 (2018).
    ADS 
    Article 
    Google Scholar 

  • 19.Aartsen, M. et al. IceCube-Gen2: the window to the extreme Universe. Preprint at https://arxiv.org/abs/2008.04323 (2020).

  • 20.Aartsen, M. G. et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 21.Stettner, J. Measurement of the diffuse astrophysical muon-neutrino spectrum with ten years of IceCube Data. In Proc. 36th Int. Cosmic Ray Conf. (ICRC2019) 1017 (Proceedings of Science, 2019).

  • 22.Abbasi, R. et al. The IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Preprint at https://arxiv.org/abs/2011.03545 (2020).

  • 23.Aartsen, M. et al. Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Phys. Rev. D99, 032004 (2019).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 24.Aartsen, M. et al. Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett. 125, 121104 (2020).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 25.Murase, K. & Fukugita, M. Energetics of high-energy cosmic radiations. Phys. Rev. D99, 063012 (2019).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 26.Fang, K. & Murase, K. Linking high-energy cosmic particles by black hole jets embedded in large-scale structures. Nat. Phys. 14, 396398 (2018).
    CAS 
    Article 
    Google Scholar 

  • 27.Zhang, B. T., Murase, K., Kimura, S. S., Horiuchi, S. & Mészáros, P. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei. Phys. Rev. D97, 083010 (2018).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 28.Muzio, M. S., Unger, M. & Farrar, G. R. Progress towards characterizing ultrahigh energy cosmic ray sources. Phys. Rev. D100, 103008 (2019).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 29.Liu, R.-Y., Wang, X.-Y., Inoue, S., Crocker, R. & Aharonian, F. Diffuse PeV neutrinos from EeV cosmic ray sources: semirelativistic hypernova remnants in star-forming galaxies. Phys. Rev. D89, 083004 (2014).
    ADS 
    Article 
    Google Scholar 

  • 30.Boncioli, D., Biehl, D. & Winter, W. On the common origin of cosmic rays across the ankle and diffuse neutrinos at the highest energies from low-luminosity gamma-ray bursts. Astrophys. J. 872, 110 (2019).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 31.Biehl, D., Fedynitch, A., Palladino, A., Weiler, T. J. & Winter, W. Astrophysical neutrino production diagnostics with the Glashow resonance. J. Cosmol. Astropart. Phys. 1701, 033 (2017).
    ADS 
    Article 
    Google Scholar 

  • 32.Cooper-Sarkar, A., Mertsch, P. & Sarkar, S. The high energy neutrino cross-section in the Standard Model and its uncertainty. J. High Energy Phys. 08, 042 (2011).
    ADS 
    Article 
    Google Scholar 

  • 33.Loewy, A., Nussinov, S. & Glashow, S. L. The effect of Doppler broadening on the 6.3 PeV W resonance in \({\bar{\nu }}_{e}\bar{e}\) collisions. Preprint at https://arxiv.org/abs/1407.4415 (2014).

  • 34.Aab, A. et al. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 10, 022 (2019).
    ADS 
    Article 
    Google Scholar 

  • 35.Gorham, P. et al. Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA. Phys. Rev. D99, 122001 (2019).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 36.Valino, I. The flux of ultra-high energy cosmic rays after ten years of operation of the Pierre Auger Observatory. In Proc. 34th Int. Cosmic Ray Conf. (ICRC 2015) 271 (Proceedings of Science, 2016).

  • 37.Cowen, D. Tau neutrinos in IceCube. J. Phys. Conf. Ser. 60, 227230 (2007).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 38.Aartsen, M. G. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 39.IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science342, 1242856 (2013).
    Article 
    Google Scholar 

  • 40.Haack, C., Lu, L. & Yuan, T. Improving the directional reconstruction of PeV hadronic cascades in IceCube. EPJ Web Conf. 207, 05003 (2019).
    CAS 
    Article 
    Google Scholar 

  • 41.Chirkin, D. & Rongen, M. Light diffusion in birefringent polycrystals and the IceCube ice anisotropy. In Proc. 36th Int. Cosmic Ray Conf. (ICRC2019) 854 (Proceedings of Science, 2019).

  • 42.Kent, J. T. The Fisher-Bingham distribution on the sphere. J. R. Stat. Soc. B44, 7180 (1982).
    MathSciNet 
    MATH 
    Google Scholar 

  • 43.Ahrens, J. et al. Muon track reconstruction and data selection techniques in AMANDA. Nucl. Instrum. Methods A524, 169194 (2004).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 44.Whitehorn, N., van Santen, J. & Lafebre, S. Penalized splines for smooth representation of high-dimensional Monte Carlo datasets. Comput. Phys. Commun. 184, 22142220 (2013).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 45.Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 31323158 (2020).
    ADS 
    Article 
    Google Scholar 

  • 46.Fedynitch, A. et al. A state-of-the-art calculation of atmospheric lepton fluxes. In Proc. 35th Int. Cosmic Ray Conf. (ICRC2017) 1019 (Proceedings of Science, 2018).

  • 47.Riehn, F. et al. The hadronic interaction model SIBYLL 2.3c and Feynman scaling. In Proc. 35th Int. Cosmic Ray Conf. (ICRC2017) 301 (Proceedings of Science, 2018).

  • 48.Gaisser, T. K., Stanev, T. & Tilav, S. Cosmic ray energy spectrum from measurements of air showers. Front. Phys. 8, 748758 (2013).
    ADS 
    Article 
    Google Scholar 

  • 49.Abramowicz, H. & Levy, A. The ALLM parameterization of tot(*p): an update. Preprint at https://arxiv.org/abs/hep-ph/9712415 (1997).

  • 50.Kelner, S. R., Kokoulin, R. P. & Petrukhin, A. A. About cross-section for high energy muon bremsstrahlung. Preprint at https://lss.fnal.gov/archive/other/fprint-95-36.pdf (1995).

  • 51.Chirkin, D. & Rhode, W. Propagating leptons through matter with Muon Monte Carlo (MMC). Preprint at https://arxiv.org/abs/hep-ph/0407075 (2004).

  • 52.Koehne, J. et al. PROPOSAL: a tool for propagation of charged leptons. Comput. Phys. Commun. 184, 20702090 (2013).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 53.Kalmykov, N. N, Ostapchenko, S. S. & Pavlov, A. I. Quark-gluon string model and EAS simulation problems at ultra-high energies. Nucl. Phys. B. 52, 1728 (1997).
    Article 
    Google Scholar 

  • 54.Feldman, G. J. & Cousins, R. D. A unified approach to the classical statistical analysis of small signals. Phys. Rev. D57, 38733889 (1998).
    ADS 
    CAS 
    Article 
    Google Scholar 

  • 55.Schneider, A. Characterization of the astrophysical diffuse neutrino flux with IceCube high-energy starting events. In Proc. 36th Int Cosmic Ray Conf. (ICRC2019) 1004 (Proceedings of Science, 2019).